If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6m^2+69m+33=0
a = 6; b = 69; c = +33;
Δ = b2-4ac
Δ = 692-4·6·33
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(69)-63}{2*6}=\frac{-132}{12} =-11 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(69)+63}{2*6}=\frac{-6}{12} =-1/2 $
| 6m^2+69+33=0 | | 20x^2-405=0 | | 2n/3-5=7 | | 10.x-13=27 | | y-2=-3(X+1) | | 4v^2+36v-88=0 | | x^-1/4+3=0 | | 15c+c-16c+4c=20 | | 3n/5+7=-11 | | 8y-2=-2(-4+1) | | n÷1.6=5 | | 13t+2t-15t+2t-t=5 | | -8n+5-n=23 | | 9p^2-279p=0 | | 3(x+5)^2=7 | | M+4m=20 | | 74f^2-92f=0 | | 15c-12c+6c=18 | | 18h+3h-17h=8 | | 11v-5v+3v-6v-2v=16 | | x*4+4=x+8 | | 9d^2+20d+4=0 | | x*4+4=x*8 | | 19r+r-19r=14 | | 4^2x-14=5*4^x | | 5k^2+4k=1 | | 2x−4/4=4x+3/3 | | 5h-5h+2h+2h=12 | | 5k^2-4k=1 | | 17u-16u=14 | | 9x-11=3x+7 | | 35y^2+44y=0 |